Summary
The CTD sensors on both floats, the Knorr cruise 193, the float deployment cruise on the Bjarni Saemundsson and the pre- and post-cruise float sensor calibrations were compared. Formulae were found to bring them all into agreement to within 0.001 psu in salinity using the Knorr CTD as the absolute standard. An algorithm to merge data from the two float CTD’s is used to reduce the effect of other errors. These corrections are applied to v7.0 of the float data

1. Analysis of Float 48 CTD data
Float 48 was the primary float in NAB08. It carried SBE-43-CT sensors on the top (SN-3530) and bottom (SN-3529) endcaps with the entrances to the sensors separated vertically by 1.40 m. The bottom CTD also included an inline SBE-43 oxygen sensor (SN-100). Both sensors were pumped for about 2 seconds at ‘slow’ speed, approximately every 50 seconds to measure T and S. In addition, the bottom sensor was pumped for each oxygen measurement for 17 seconds at ‘slow’ speed and 15 seconds at ‘fast’ speed at intervals of about 50 seconds during profiles and about 400 seconds during settles and drifts. Float 48 was deployed on April 4, 2008, stopped sampling on May 25 and was recovered on June 3, 2008.

Examination of these data reveals several types of errors in these sensors:
1. Salinity errors near the surface due to air entrainment
2. Salinity errors at depth due to the ingestion of plankton
3. Salinity noise at depth due to unknown sources
4. Steady or slowly changing temperature and salinity offsets
This document analyses the last category of errors and presents corrections. It presents an algorithm to merge data from the CTDs to minimize the effect of the other error types.

1a. Comparison of top and bottom salinity and temperature on float 48
Examination of the data reveals steady differences between the top and bottom temperature and salinity values that change with time. This section quantifies these differences. An offset of the top salinity sensor by 0.007 psu, applied to all of this data based on initial testing and used in the real time files. These files are the starting point for this analysis.
Fig. 1 shows the first analysis (program Sdrift.m). After a quick removal of error types 1 and 2, the difference between top and bottom salinity was grouped into pressure categories and subject to a 200 point running median filter in each bin (thin lines in figure). These were further fit with a 4th order polynomial (thick lines). All pressure bins show an increase in the salinity difference with time of about 0.005 psu. The differences are smallest for the shallowest and deepest bins, because the ocean stratification is least there.

The same analysis but for temperature differences is shown in Fig. 2. The difference in temperature appears to be 0.001°C or less for all time for the bins with the lowest stratification.

A second detailed analysis was conducted by focusing on the daily downward float profiles and choosing, by eye (program Pickfit.m), 24 regions of uniform slope in S(z). Fig. 3 shows examples of these regions. Each region was fit with a line to each sensor.

Fig. 1. Average float 48 top-bottom CTD differences in depth and time bins vrs time.
Fig. 2. Same but for temperature.

Fig. 3. Examples of regions for comparing top and bottom salinity measurements on float 48. Top CTD is blue, bottom green. Red dots show data used in linear fits shown by heavy lines (program SzDown_3.m)
Fig. 4 shows the resulting offsets. The offsets between sensors were estimated as 1) the difference between the fit lines at the mean pressure (green *) and 2) the average difference of the points used in the fit (blue *). Additional estimates rely on estimating the vertical salinity gradient. The salinity gradient was estimated from a linear depth fit to each of the sensors, $S_{z_{top}}$ and $S_{z_{bott}}$, a quantity that does not depend on the relative calibration of the sensors. The gradient computed from mean difference between the two sensors separated by distance ΔZ is $S_{z_{diff}} = (\Delta S + \varepsilon)/\Delta Z$ and does depend on the calibration offset ε. The two additional estimates of ε match $S_{z_{diff}}$ to 3) $S_{z_{top}}$ (magenta circle) and 4) $S_{z_{bott}}$ (red circles). Data segments for which the sum of the absolute value of the differences 3-1, 4-1, 3-4 and 2-1 are less than 0.003 psu are plotted with large circles in Fig. 4. The average of the 4 estimates is used to fit the solid line. The offsets clearly increase with time. The standard deviation of the data from the line is 0.00035 psu.

![Fig. 4. Average top - bottom salinity on float 48 against yearday of 2008 for 24 selected down profiles](image)

![Fig. 5. Same but for T_{35}, the potential temperature assuming a uniform salinity of 35 psu.](image)

Fig. 5 shows a similar analysis for temperature. It yields much noisier results, with all but 8 points rejected. There is a positive bias, particularly in the red and magenta offset measurements based on estimating the slope of the temperature profile, implying that the top temperature sensor is anomalously hot by a few mK. This is probably the result of this sensor being in the wake of the descending float, which is warm due to the thermal mass of the float. This effect does not occur for salinity. This effect increases with time as the thermal stratification increases and is non-existent early in the experiment when there is little thermal stratification. Using only the points for which the sum of the 4 offset estimate errors is less 1 mK, the difference between the top and bottom sensors is about -0.5 mK with little evidence of a trend.

A third analysis focuses on the mixed layer only and on float drift modes instead of profiles (program DSml_3.m). During these drifts, the rms vertical velocity measured by the floats is an excellent indicator of active mixing. Segments of 200 samples (1000
seconds) were considered well-mixed if the rms vertical velocity was greater than 1 cm s\(^{-1}\) and at least one data point was shallower than 15m. Fig. 6 shows the mean (o) and median (x) differences between the top and bottom salinities. There is a clear increase in time, slightly less than that in Fig. 4. Fig. 7 shows the same for T\(_{35}\). There is no evidence of a trend and a mean offset of about -0.5 mK.

![Fig. 6. Top-bottom salinity difference for float 48 in actively mixing upper mixed layers. Solid line is fit by eye. Dashed is line from Fig. 4.](image)

![Fig. 7 Same but for T\(_{35}\), the potential temperature assuming a uniform salinity of 35 psu.](image)

In summary, all three analyses show a trend in the difference between the top and bottom salinities. This can be corrected by adding a linearly increasing offset to the bottom sensor defined by a value of 0.0005 psu at day 97 and a value of 0.005 psu at day 145. There is no evidence of a trend in temperature, but the top sensor reads 0.5mK colder than the bottom on average. These estimates are accurate to better than 0.001 psu and 1mK. The accuracy could probably be increased slightly by a nonlinear fit. These estimates are in addition to an offset 0.007 psu added to the top CTD based on pre-cruise measurements.

1b. Pre and Post Cruise Seabird Calibrations for float 48

Pre-cruise calibrations of the C-T sensors on float 48 were made on Nov. 4, 2007 and July 22, 2007 for sensors 3529 (bottom) and 3530 (top) respectively. Post-cruise calibrations for both sensors were made on Oct. 9, 2008. Fig. 8 shows the difference between computed salinity and temperature using the post-cruise and pre-cruise coefficients for a representative range of temperatures, salinities and pressures (program Seabirdcals.m)
For the top CT sensor (S/N 3530), the temperature differences are somewhat less 1 mK and the salinity differences are somewhat less than 0.001 psu. These changes are small relative to other errors and we will therefore assume that there is no drift in this sensor.

For the bottom CTD (S/N 3529), the temperature difference is much less than 1 mK. Salinity measurements made using post (pre) cruise calibrations coefficients are about 0.0045 psu saltier (fresher) than those made with pre (post) cruise coefficients. The float data uses the pre-cruise calibrations. This is approximately correct at start of deployment. By the end of the deployment, however, the post-cruise calibrations are more correct and using the pre-cruise calibrations will result in measurements that are too fresh. To bring bottom S into agreement with the more stable top S at the end of the deployment we must therefore add about 0.0045 to bottom S. This agrees with analysis in 1a indicating that a trend needs to be added to the bottom salinity. We will use the trend computed in section 1a to make this correction.

1c. Comparison of float 48 temperature and salinity measurements to those made by the Knorr CTD during the process cruise

Knorr cruise 193 carried an SBE-911plus CTD with dual pairs of conductivity and temperature sensors (SN 2774 and 2900 for temperature, 1474 and 1859 for conductivity). Table 1 lists all of the float 48 calibration casts from Knorr 193. As described below, the best match between float 48 and these data requires that an
additional offset of 0.0075 psu be subtracted from the float 48 data. The following analyses are done after both this offset, and that in section 1b have been applied. A full set of comparison plots is shown in Appendix 1.

Table 1 – Knorr 193 calibration casts for Float 48

<table>
<thead>
<tr>
<th>Filename</th>
<th>Cast</th>
<th>Comment (* are Good)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19303009</td>
<td>10a</td>
<td>Poor float/ctd fit</td>
</tr>
<tr>
<td>19303015</td>
<td>21-a</td>
<td>Excellent *</td>
</tr>
<tr>
<td>19303036</td>
<td>35a</td>
<td>Good*</td>
</tr>
<tr>
<td>19303045</td>
<td>44a</td>
<td>Poor Up/down match</td>
</tr>
<tr>
<td>19303047</td>
<td>51a</td>
<td>Good*</td>
</tr>
<tr>
<td>19303063</td>
<td>64a</td>
<td>Short too far away</td>
</tr>
<tr>
<td>19303064</td>
<td>64b</td>
<td>Noisy Up/down</td>
</tr>
<tr>
<td>19303088</td>
<td>94a</td>
<td>Poor float/CTD fit</td>
</tr>
<tr>
<td>19303091</td>
<td>101b</td>
<td>Good*</td>
</tr>
<tr>
<td>19303106</td>
<td>117a</td>
<td>Excellent*</td>
</tr>
</tbody>
</table>

Fig. 9 plots two of these casts, a good calibration (Fig. 9a) and a poor one (Fig. 9b). Of the 10 casts, 5 are rejected for the reason listed in Table 1 and marked on the cast in Appendix A. Notice that the temperature differences are much bigger than the salinity differences, typically 10mK rather than 0.001 psu, presumably because of the much larger temperature gradients in the water column. These are too large to be useful in intercalibrating the sensors, so this analysis will focus only on salinity intercomparison.

Fig. 9ab. A good (left) and poor (right) quality calibration cast. The top panels show the depth/time plots for the ship’s CTD (magenta) and float down cast (blue); the salinity profile (see color key) and the differences (float salinity – CTD upcast salinity) for top and bottom float sensors (blue/green) and the first and second CTD sensor pairs (solid/dashed). The bottom panels show the same for temperature. Red hand-drawn lines show good comparison regions in 9a; red marks show reason for rejecting cast in 9b. A complete set of casts is in Appendix 1.
The first method for intercalibrating the two platforms is shown in Fig. 10 (program F48vKnorr_3.m). Profiles of the median salinity difference in 10m bins have a mean value of 0.0005 psu using either all of the profiles (right) or just the good ones (left), with a standard deviation of the binned data of 0.0006 psu and 0.001 psu respectively. There is a suggestion of a trend with depth of about 0.001 psu for the good profiles which we will ignore.

A second method chooses uniform regions in the difference plots as shown for example by the vertical lines of Fig. 9a. A total of 9 such regions were identified by eye, marked on the figures in Appendix 1 and a value of the CTD float difference estimated by eye at a resolution of 0.0005 psu. These have a mean of 0.0002 psu, a standard deviation of 0.0008, and a mode and a median of 0 psu.

In summary, comparison the Knorr and float 48 salinities can be brought into agreement to an accuracy of 0.001 psu by subtracting 0.0075 psu from the float salinity values. This is in additional to the corrections described in section 1a.

1c. Consistency of Knorr temperature and salinity data

Although the calibration casts are too noisy to provide a useful intercomparison of Knorr and float temperature, the pairs of temperature sensors on the Knorr CTD and on float 48 agree well. For the Knorr, Fig. 11 (Program KnorrTdiff.m) shows that the difference is well below 1mK; the mean difference is 0.4±0.3mK. Fig. 7 shows a similar consistency between the top and bottom temperature sensors on the float. Given the high stability of Seabird temperature sensors, specified as less then 2mK per year, it seems best to accept the sensor values as correct. A similar analysis of the salinity from the Knorr shows an average difference between sensor pairs of about 0.001 psu.
2. Analysis of Float 47 CTD data

Float 47 was configured identically to float 48 with top (SN-2870) and bottom (SN-3528) SBE-41CT sensors.

2a. Comparison of top and bottom salinities and temperatures on float 47

Float 47 operated for only 12 days, so the opportunities for intercalibration were significantly less than for float 48. Fig. 12 shows the profile and drift intercomparisons of the top and bottom temperature and salinity sensors. After the realtime initial addition of 0.006 psu to the salinity sensor, the salinity and temperature sensors are consistent to 1mK and 0.001 psu and there is no evidence of drift.

Fig. 12a. Top-Bottom salinity difference from all down profiles of float 47 as in Fig. 5.

Fig. 12b. Top-bottom T_{35} difference for all down profiles of float 47 as in Fig. 6.
3. Float 47 and 48 calibrations at Deployment

Floats 47 and 48 were deployed on April 4, 2008 by the Bjarni Sæmundsson, followed shortly thereafter by the glider deployments. The Bjarni Sæmundsson carried a SBE-9 CTD with a single pair of conductivity and temperature sensors (SN T2021, C1643 calibrated 16-Nov-2007). CTD casts were made near the floats just before dives 3 and 5 of the floats using the float GPS fixes to position the ship. Fig. 13 shows the location of the deployments, float surfacings, and calibration casts.
Fig. 14 shows the salinity profiles from floats and the Bjarni’s CTD (program F47v48VBjarni_3.m) Float 48 data has been corrected to the Knorr data as described in sections 1a and 1b. No corrections to the float 47 data have been made. The complete cast data are plotted in Appendix B.

Float 48 is saltier than float 47 in profiles 1 and 2 but fresher in profiles 3 and 5, most likely representing a real spatial gradient in salinity as the floats moved apart.

![Salinity profiles from float 47 (blue), float 48 (red) and Bjarni CTD (black) for dives 1, 2, 3 and 5.](image)

Given the temporal changes, only profiles 1 and 2 allow comparison between the floats. Within the well mixed layer extending to at least 100 db, float 47 is 0.0038 psu saltier on the first cast and 0.0045 psu saltier on the second cast. Thereafter, the differences switch sign. This very limited data suggests that 0.004 psu should be subtracted from float 47 to make it best agree with float 48.

Similar comparisons between temperatures on these platforms yields differences of 0.01 C, far larger than would be expected for these sensors. This is attributed to real spatial and temporal differences and provides no useful calibration information. Convective plumes can easily induce this level of thermal variability.

Only float profiles 3 and 5 allow comparison with the Bjarni CTD. The Bjarni CTD cast is more similar in shape to that of float 47. Given the assumed spatial variability, no comparison with float 48 will be made. The Bjarni CTD, casts 3 and 5, is about 0.0012 psu fresher on the downcast and 0.0006 psu fresher on the upcast compared to float 47. Subtracting 0.003 psu will bring it into agreement with the calibrated float 47, and thus 48.
5. Error correction

The calibrated sensors still contain errors. Starting with data release v3, measurements with the following conditions were edited:

1. Salinities less than 35 psu. This mostly catches zero values when the CTD returned no data.
2. Salinity in the top CTD is less than the bottom CTD by more than 0.03 psu and pressure is less than 4 dbar. Edit the top CTD. This catches times when the top CTD ingests air with the float near the surface.
3. The two CTD’s differ by more than 0.09 psu. Edit the bottom CTD. This catches the worst cases of the error in the bottom CTD described below.

Significant errors in the CTD data remain after these corrections. Figure 15 shows a typical example of high noise and lower values in the bottom CTD consistent with plankton fouling. These errors are sufficiently large that it was decided to merge the two CTD records into a single variable. For each mode of each cycle, the CTD with the smaller standard deviation of salinity was used. A 3 point running median filter was applied to eliminate single spikes. For most of the data, the bottom CTD is noisier than the top CTD. Perhaps the plumbing attached to the sensor reduces the flow rate and prevents plankton flushing. Figures 15 and 16 show examples of the corrected data for profiling and drift modes. Similar figures for the entire data record are shown in Appendices 1 and 2 respectively.

Fig. 15. Example of error in bottom conductivity sensor (blue) perhaps caused by plankton ingestion. Top CTD (green) looks fine.

Fig. 15. Example of drift mode salinity data and error correction. Top: Float depth. Bottom: Salinity from top (green) and bottom (blue) sensors. Top sensor is chosen (red).
6. Conclusions

The following recipes bring the following salinity sensors into agreement.

Knorr: This is taken as the reference

Bjarni deployment: Subtract 0.003 psu. This has an uncertainty of several 0.001 psu.

Floats 47 and 48: Float 48 can be made to agree with the Knorr CTD during the time of the Knorr cruise. Float 47 can be made to agree with float 48 at deployment. These corrections may well not apply for the second short deployment of float 47. Both corrections are accurate to about 0.001 psu.

The Matlab subroutine *TSCorrect.m*, listed below, applies these calibration corrections to the floats: This is used in releases 3-6 of the float data.

The Matlab subroutine *ctdchoice.m*, listed below, takes this output for float 48 and combines the two temperature and salinity values into a single variable. New variable definitions are:

- TS.Tcal, TS.Scal – The calibrated values from both top and bottom sensors
- TS.T, TS.S – The single TS values from choosing between the two sensors
- TS.ctd – The sensor used in this choice 1=bottom, 2=top
- TS.Theta, TS.Sig0 – Derived variables from TS.T, TS.S
Matlab functions

function TS = TSCorrect(TS, floatID);

% Version: $Id: TSCorrect.m 232 2009-08-31 21:58:46Z eric.rehm@gmail.com$
% Author: Eric Rehm (U. Washington Applied Physics Lab)
% TS = TSCorrect(TS, floatID) does experiment-dependent correction on T, S
% Inputs:
% TS TS structure containing temperature, salinity and pressure (typ. Mx2 matrices)
% This data should come directly from CT-41 sensor with no other corrections
% floatID '47' or '48' (numeric or string)
% Output:
% TS TS structure with corrected temperature and salinity
%
% Make sure floatID is a string
if isnumeric(floatID)
 floatID = num2str(floatID);
end

% NAB08 indices: Bottom CTD = 1, Top CTD = 2
iBot = 1;
iTop = 2;

% Eliminate unrealistically low S values in top and bottom CTD
bad = find(TS.S(:,iBot)<=0 | TS.S(:,iTop)<=0);
nbad=length(bad);
% Delete all TS data (TS.P, TS.T, etc.) data for these bad points
TS = TSDelete(TS, bad);
if (nbad > 0)
 fprintf(1,'WARNING: %d zero salinity values - DELETE\n',nbad);
end

% Do the TS corrections
switch (floatID)
 case '47'
 % Correct salinity offset: Add 0.006 psu to top sensor; no temp correction
 % No additional corrections necessary to make top & bottom sensors agree
 TS.S(:,iTop) = TS.S(:,iTop) + 0.006;

 % Subtract 0.004 psu to bring in line with Float 48
 TS.S(:,iTop) = TS.S(:,iTop) - 0.004;
 end
TS.S(:,iBot) = TS.S(:,iBot) - 0.004;

case '48'

% Correct salinity offset
- Add 0.007 PSU to top sensor (Spring Beach Testing)
- Subtract 0.004 PSU from both sensors to adjust to R/V Knorr
TS.S(:,iTTop) = TS.S(:,iTTop) + 0.007;

% Subtract 0.0075 PSU from both sensors to bring in line with Knorr
TS.S(:,iTBot) = TS.S(:,iTBot) - 0.0075;

% 4. Add a linear function to the bottom sensor defined by
% 0.0005 psu on day 97 and 0.005 psu on day 145
% to make it agree with top sensor
ydcorr = [97 145];
Scorr = [0.0005 0.005];
p = polyfit(ydcorr, Scorr, 1);
m = p(1);
b = p(2);
ScorrBot = m*TS.yd + b;
TS.S(:,iTBot) = TS.S(:,iTBot) + ScorrBot;

otherwise
 error(sprintf('Unknown floatID = %d',floatID));
end

% Eliminate surface spikes in top CTD - air
bad = find(TS.P<4 & TS.S(:,iTTop)-TS.S(:,iTBot)>0.03);
bad = [bad; bad+1; bad-1];
TS.S(bad,iTop) = NaN;
nbad = length(bad);
if (nbad > 0)
 fprintf(1,'WARNING: %d surface salinity (air) spikes - set to NaN\n',nbad);
end

% Eliminate big offsets in bottom CTD - plankton
bad = find(abs(diff(TS.S,1,2))>0.09);
TS.S(bad,iBot) = NaN;
nbad = length(bad);
if (nbad > 0)
 fprintf(1,'WARNING: %d bottom salinity (plankton) spikes - set to NaN\n',nbad);
end

% Recompute potential density and potential temperature
TS.Sig0 = sw_pden(TS.S,TS.T,TS.PP,0.)-1000;
TS.Th = sw_ptmp(TS.S,TS.T,TS.PP,0.);
function [TS]=ctdchoice(TS)
% Input calibrated CTD data from float 48
% Puts old TS.T TS.S into TS.Tcal TS.Scal
% % Makes new TS.T TS.S from best choice of top or bottom CTD
% Derived variables TS.Th, TS.Sig0 are computed from these.
% New variable TS.ctd = 1 for bottom CTD, 2 for top CTD
% % Reads ProfileChoice.mat DriftChoice.mat

% Put calibrated dual TS values into new variables
TS.Tcal=TS.T;
TS.Scal=TS.S;

% Make new TS variable by combining these
TS.T(:,1)*NaN;TS.S(:,1)*NaN;

drift = load('DriftChoice.mat');
for i=1:length(drift.yd)
 kk=find(TS.cycle==drift.cycle(i) & TS.mode>2);
 TS.T(kk)=TS.Tcal(kk,drift.ctd(i));
 TS.S(kk)=TS.Scal(kk,drift.ctd(i));
 TS.ctd(kk)=drift.ctd(i);
end

prof = load('ProfChoice.mat');
for i=1:length(prof.yd)
 kk=find(TS.cycle==prof.cycle(i) & TS.mode==prof.mode(i));
 TS.T(kk)=TS.Tcal(kk,prof.ctd(i));
 TS.S(kk)=TS.Scal(kk,prof.ctd(i));
 TS.ctd(kk)=prof.ctd(i);
end

TS.Th= sw_ptmp(TS.S,TS.T,TS.P,0.);
TS.Sig0=sw_pden(TS.S,TS.T,TS.P,0.)-1000;
cycle 1 95.17 95.20 dS 0.15 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 2 95.27 95.62 dS −0.60 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 3 95.76 95.87 dS −0.07 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 4 95.93 96.12 dS 0.54 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 5 96.24 96.62 dS 0.54 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 6 96.68 97.12 dS –0.09 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 7 97.19 97.63 dS 0.00 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 8 97.70 98.13 dS 0.46 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 9 98.18 98.63 dS 0.13 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 10 98.68 99.13 dS 0.37 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 11 99.19 100.13 dS 0.12 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 12 100.20 101.13 dS −0.84 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 13 101.19 102.13 dS 0.18 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 14 102.54 103.12 dS 0.09 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 15 103.54 104.12 dS 0.09 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 17 105.21 105.65 dS 2.32 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 18 106.06 106.65 dS 1.10 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 19 107.07 107.66 dS -0.97 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 20 108.07 108.66 dS −0.50 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 22 109.88 110.65 dS −0.16 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 23 110.95 111.65 dS 0.38 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 24 111.88 112.65 dS 0.90 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 25 112.88 113.64 dS 1.65 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 26 113.88 114.64 dS 0.99 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 27 114.87 115.64 dS 1.99 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 28 115.87 116.64 dS 2.02 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 30 117.88 118.64 dS –1.98 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 31 118.87 119.64 dS −2.22 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 34 121.87 122.63 dS 1.13 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 36 123.87 124.63 dS 1.08 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 37 124.87 125.62 dS 0.36 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 38 125.87 126.63 dS 0.87 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 39 126.86 127.62 dS 0.81 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 40 127.86 128.62 dS 1.42 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 42 129.85 130.62 dS 0.29 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 43 130.87 131.62 dS 3.89 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 44 131.87 132.62 dS 0.01 Thick are chosen. Color (rgm) = Mode (DSU)
Potential Density

Pressure / dbar

cycle 45 132.91 133.62 dS 0.95 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 46 133.91 134.62 dS −0.17 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 47 134.89 135.63 dS 0.80 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 48 135.87 136.62 dS 1.71 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 49 136.92 137.63 dS 3.62 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 50 137.93 138.62 dS -0.17 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 51 138.87 139.62 dS 0.69 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 52 139.90 140.63 dS 1.88 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 53 140.71 141.63 dS 1.25 Thick are chosen. Color (rgm) = Mode (DSU)
Potential Density - Pressure / dbar

cycle 54 141.79 142.63 dS 0.06 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 55 142.71 143.64 dS −0.08 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 56 143.89 144.67 dS −2.07 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 57 144.95 145.67 dS −1.36 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 58 145.91 145.94 dS 0.38 Thick are chosen. Color (rgm) = Mode (DSU)
cycle 2 Yeardays: 95.29 95.61 dS 0.6
cycle 3 Yeardays: 95.79 95.86 dS −3.2
cycle 4 Yeardays: 95.96 96.12 dS 0.6
cycle 6 Yeardays: 96.71 97.12 dS 0.5
cycle 7 Yeardays: 97.21 97.62 dS 0.7
cycle 8 Yeardays: 97.72 98.12 dS 0.0
cycle 9 Yeardays: 98.21 98.62 dS 0.4
cycle 10 Yeardays: 98.71 99.12 dS 0.7
cycle 11 Yeardays: 99.21 100.12 dS 1.2
cycle 12 Yeardays: 100.22 101.12 dS 0.7
cycle 18 Yeardays: 106.08 106.64 dS 0.3
cycle 19 Yeardays: 107.09 107.64 dS 0.9
cycle 21 Yeardays: 109.10 109.65 dS −0.0
cycle 23 Yeardays: 110.97 111.64 dS −0.5
cycle 25 Yeardays: 112.90 113.64 dS 0.2

Pressure / dbar

Salinity
cycle 26 Yeardays: 113.89 114.64 dS −0.5
cycle 29 Yeardays: 116.89 117.63 dS 1.3
cycle 30 Yeardays: 117.90 118.63 dS 1.1
cycle 31 Yeardays: 118.89 119.63 dS 0.4
cycle 32 Yeardays: 119.89 120.63 dS 0.4
cycle 33 Yeardays: 120.88 121.62 dS 0.5
cycle 34 Yeardays: 121.89 122.62 dS 0.1
cycle 36 Yeardays: 123.89 124.62 dS 0.3
cycle 37 Yeardays: 124.89 125.62 dS −0.0
cycle 38 Yeardays: 125.89 126.61 dS 0.3
cycle 40 Yeardays: 127.87 128.61 dS 2.7
cycle 41 Yeardays: 128.88 129.61 dS 4.1
cycle 42 Yeardays: 129.87 130.61 dS 0.2
cycle 44 Yeardays: 131.87 132.61 dS −0.2
cycle 45 Yeardays: 132.92 133.62 dS −0.4
cycle 48 Yeardays: 135.89 136.62 dS 1.1
cycle 49 Yeardays: 136.92 137.62 dS 6.0
cycle 50 Yeardays: 137.94 138.62 dS 0.5
cycle 51 Yeardays: 138.89 139.62 dS 0.7
cycle 53 Yeardays: 140.75 141.62 dS 0.4
cycle 54 Yeardays: 141.83 142.62 dS 3.6
cycle 55 Yeardays: 142.75 143.62 dS 3.6
cycle 57 Yeardays: 144.96 145.66 dS 5.5