Iodine-129 in Seawater Offshore Fukushima: Distribution, Inorganic Speciation, Sources, and Budget

Xiaolin Hou,* Pavel P. Povinec,§ Luyuan Zhang,‡ Keliang Shi,* Dana Biddulph,∥§ A. J. Tim Jull,∥▼ Qi Liu,‡ Maoyi Luo,* Peter Steier,⊥ and Weijian Zhou‡

†Center for Nuclear Technology, Technical University of Denmark, Risø Campus, DK-4000 Roskilde, Denmark
‡Xi’an AMS Center, SKLLQG, Institute of Earth Environment, CAS, Xi’an 710075, China
§Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
∥Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
⊥Faculty of Physics, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
▼Department of Geosciences, Imperial College London, United Kingdom

ABSTRACT: The Fukushima nuclear accident in March 2011 has released a large amount of radioactive pollutants to the environment. Of the pollutants, iodine-129 is a long-lived radionuclide and will remain in the environment for millions of years. This work first report levels and inorganic speciation of I\(^{129}\) in seawater depth profiles collected offshore Fukushima in June 2011. Significantly elevated I\(^{129}\) concentrations in surface water were observed with the highest I\(^{129}/I^{127}\) atomic ratio of 2.2 \(\times 10^{-9}\) in the surface seawater 40 km offshore Fukushima. Iodide was found as the dominant species of I\(^{129}\), while stable I\(^{127}\) was mainly in iodate form, reflecting the fact that the major source of I\(^{129}\) is the direct liquid discharges from the Fukushima NPP. The amount of I\(^{129}\) directly discharged from the Fukushima Dai-ichi nuclear power plant to the sea was estimated to be 2.35 GBq, and about 1.09 GBq of I\(^{129}\) released to the atmosphere from the accident was deposited in the sea offshore Fukushima. A total release of 8.06 GBq (or 1.2 kg) of I\(^{129}\) from the Fukushima accident was estimated. These Fukushima-derived I\(^{129}\) data provide necessary information for the investigation of water circulation and geochemical cycle of iodine in the northwestern Pacific Ocean in the future.

INTRODUCTION

A nuclear accident at the Fukushima Dai-ichi nuclear power plant (1FNPP), Japan, occurred in March 2011 due to failure of the cooling system after the Tohoku earthquake and the Tsunami on March 11, 2011. Hydrogen explosions occurred in unit 1 on March 12 and unit 3 on March 14, and in the spent fuel storage building in unit 4 on March 15, as well as an internal explosion in reactor 3 on March 15, 2011.\(^1\)–\(^3\) Significant quantities of radioactive materials were emitted to the atmosphere from March 12 through 24, with estimated atmospheric releases of 150–160 PBq (peta becquerels, or 10\(^{15}\) Bq) of I\(^{131}\) and 10–15 PBq of Cs\(^{137}\).\(^4\)–\(^6\) These radionuclides were transported and deposited over large areas of the northern hemisphere; radioisotopes of cesium and iodine have been observed in the atmosphere over America, Europe, and Asia. Fortunately, due to the dominant westerly wind, the radio-

nuclides were transported and deposited mainly in the Pacific Ocean, with less than 20% of them deposited over the land of Japan.\(^1\)–\(^6\),\(^7\)

The damage in the containment vessel of the reactor of unit 2 at the 1FNPP due to an internal hydrogen explosion caused a leakage of highly contaminated water to the sea from March 25 to April 5.\(^5\)–\(^8\),\(^9\) Large volumes of contaminated water were produced during cooling of the reactors using fresh water and seawater, and some of this water was intentionally discharged directly to the sea April 4–20, 2011 to leave space for more highly contaminated water. In addition, some contaminated

Received: November 1, 2012
Revised: March 4, 2013
Accepted: March 5, 2013
Published: March 5, 2013

groundwater was also directly discharged to the sea. This direct discharge of contaminated water to the sea has significantly elevated 137Cs and 131I concentrations in seawater at the coast as well as offshore, starting from March 21 and rapidly increasing from March 27, with peak values on March 30 (47 kBq/L of 137Cs) and on April 6 (68 kBq/L) at the discharge point of the FNP. Therefore liquid discharge directly to the sea was another major source of radionuclides to the environment, especially to the ocean.

137Cs and 131I, which were two major radionuclides released from the Fukushima accident, have been intensively investigated. However, many other radionuclides have also been released to the environment, especially through the liquid discharge to the sea, because of high leaching efficiency of radionuclides from the damaged fuel rod materials when corrosive brine water was used to cool the reactor. Among these radionuclides, 129I is a fission product with relative high fission yields of 0.6%. However, few data on 129I from the Fukushima accident have been reported, especially in the sea surrounding Fukushima. 129I is a long-lived radioisotope of iodine with a half-life of 15.7 Ma. It is a soft beta-emitter with maximum beta-energy of 154 keV. Therefore, 129I is less radiologically harmful, and less important in view of radiation protection. However, due to its high solubility and the long residence time of iodine in the ocean, 129I is an ideal oceanographic tracer for investigation of water circulation in the ocean, and a useful environmental tracer for the investigation of the interaction of atmosphere and seawater, as well as for the biochemical cycle of stable iodine through chemical speciation analysis of 129I. However, 129I ($t_{1/2}$ = 8 days) is the most harmful radionuclide from the nuclear accident, due to its large release during the accident, and the high uptake and enrichment in human thyroid. Its short half-life prevents it from being well measured in the environment to evaluate the radiation risk to humans exposed to the radioactive contamination. The long-lived 129I provides a good analogue to reconstruct levels and distribution of short-lived 131I in the environment. In addition, iodine is highly concentrated in seaweed, and some types of seaweed are popular seafood in Japan and other Asian countries. 129I discharged to the sea will be concentrated in the seaweed and some sea fish, which might cause an increased radiation to humans who consume seafood from a highly contaminated area.

This work aims to investigate the levels and distribution of 129I in the sea offshore Fukushima by determination of 129I in depth profiles of seawater, and to evaluate the source term and budget of 129I by chemical speciation of 129I and 127I for iodide and iodate in seawater profiles.

MATERIALS AND METHODS

Samples and Reagents. Seawater samples were collected from offshore Fukushima during the research cruise organized by American scientists June 3–17, 2011 using the research vessel Kaimikai-O-Kanaloa of the University of Hawaii. The samples were stored in dark at ambient temperature before analysis. Of these samples, depth profiles from 4 sampling stations with distances of 40–530 km from Fukushima Dai-ichi nuclear power plant (Figure S-1 and Table S-1 in the Supporting Information) were used for 129I.

All chemical reagents used were of analytical grade and all solutions were prepared using deionized water (18.2 MΩ cm$^{-1}$). 129I standard (NIST-SRM-4949c), carrier free 125I (Amersham Pharmacia Biotech, Little Chalfout, Buckinghamshire, UK), 127I carrier (Woodward iodine, MICAL Specialty Chemicals, New Jersey, USA), and Bio-Rad AG1-x4 anion exchange resin (50–100 mesh, CI form, Bio-Rad laboratories, Richmond, CA, USA) were used in the experiments.

Analytical Methods for Determination of 129I Species. Anion exchange chromatography was used for separation of iodide, iodate, and total inorganic iodine from seawater. A schematic diagram of the separation procedure is shown in Figure S-2, and the separation methods are presented in the Supporting Information. The detailed methods for speciation analysis of 129I in seawater have been reported elsewhere.

Filtered seawater (0.5–1 L) was transferred to a beaker, and 129I was added. After loading the prepared solution to an anion exchange column (AG1-x4 resin, NO$_3^−$ form), and washing with 0.2 mol/L NaNO$_3$ iodide on the column was eluted with 5% NaClO$_2$ eluent and was combined for iodate separation. A 1.0 mL solution of the iodide fraction, the iodate fraction, and the original seawater were taken to a vial for 127I measurement using ICP-MS. Iodine in the remaining solutions of the iodide and iodate fractions, as well as in the original seawater, was separated using CHCl$_3$ extraction based on adjusting the oxidation state of iodine. The separated iodine from each fraction in iodide form was used to prepare AgI sputter target by adding AgNO$_3$ solution for AMS measurement of 129I.

Before extraction, the eluate of iodide from the anion exchange column was also measured for 127I by gamma-spectrometer to monitor chemical recovery of iodide during column separation. This measurement is used to correct the 127I and 129I concentrations in seawater. An ICP-MS system (X Series II, Thermo, Waltham, MA) equipped with an Xs- skimmer cone and standard concentric nebulizer was used for the measurement of 127I. A 1.0 mL portion of the separated fractions or the original seawater was diluted to 20 mL with 1% ammonium solution, and spiked with Cs$^+$ (to 2.0 ppb) as internal standard. The detection limit of the method for 127I was calculated as 3 SD of the procedure blank to be 0.03 ng/mL.

The 129/127I ratios in total iodine samples were determined by AMS at the Vienna Environmental Research Accelerator (VERA) and the University of Arizona AMS Laboratory, both using a 3MV National Electrostatics Corporation AMS. The 129/127I ratios in iodide and iodate samples were measured using the 3 MV AMS facility at the Xi’an AMS Center. The machine backgrounds of the 129/127I ratio are around (2–4) × 10$^{-14}$. Procedure blanks using the same procedure as the samples were also prepared; the highest measured 129/127I ratio is 2.8 × 10$^{-13}$, which is significantly lower than measured 129/127I ratios in the samples. No seawater from uncontaminated deep ocean with 129/127I close to preanthropogenic level of 2 × 10$^{-12}$ in marine environment has yet been analyzed. However, a 129/127I ratio as low as 3 × 10$^{-13}$ (or 5 × 10$^{-14}$ atoms for a target with 0.5 mg 127I) has been measured in a procedure background sample, which was produced by addition of 127I carrier to deionized water and separation of iodine and measuring it using the same procedure and method as for the samples analyzed in this work. The 129I levels for any species presented in this work (7.7 × 10$^{-10}$ at/L for 129I concentration in >0.5 L water or 2.6 × 10$^{-11}$ for 129/127I atomic ratio) are 1–2 orders of magnitude higher than the procedure blank, confirming that the applied method is well suitable for the analysis of these samples.
Table 1. Distribution of 129I, 127I, 129I/127I Ratios, and Speciation of 129I and 127I in Four Seawater Profiles Offshore Fukushima Collected in June 2011*

<table>
<thead>
<tr>
<th>sampling station</th>
<th>depth (m)</th>
<th>total 129I concn ($\times 10^7$ atoms/L)</th>
<th>127I concn (µg/L)</th>
<th>129I/127I ($\times 10^{-10}$ at/at)</th>
<th>129I (μg/L)</th>
<th>127I (µg/L)</th>
<th>iodide/iodate (mol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>400</td>
<td>1.89 ± 0.40</td>
<td>6.044 ± 1.29</td>
<td>0.66 ± 0.14</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>11</td>
<td>200</td>
<td>4.46 ± 0.36</td>
<td>6.032 ± 1.30</td>
<td>1.56 ± 0.13</td>
<td>2.89 ± 0.47</td>
<td>0.074 ± 0.001</td>
<td>NM</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>9.87 ± 0.65</td>
<td>5.533 ± 1.24</td>
<td>3.75 ± 0.26</td>
<td>6.01 ± 0.52</td>
<td>0.162 ± 0.004</td>
<td>NM</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>15.63 ± 1.07</td>
<td>5.640 ± 1.08</td>
<td>5.84 ± 0.42</td>
<td>8.54 ± 2.11</td>
<td>0.173 ± 0.005</td>
<td>NM</td>
</tr>
<tr>
<td>14</td>
<td>400</td>
<td>0.77 ± 0.09</td>
<td>6.164 ± 1.22</td>
<td>0.26 ± 0.03</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>2.30 ± 0.16</td>
<td>5.868 ± 1.00</td>
<td>0.83 ± 0.06</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>14</td>
<td>50</td>
<td>5.68 ± 0.38</td>
<td>5.640 ± 1.15</td>
<td>2.19 ± 0.15</td>
<td>3.61 ± 0.28</td>
<td>0.185 ± 0.004</td>
<td>NM</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>14.75 ± 0.50</td>
<td>5.642 ± 1.21</td>
<td>5.51 ± 0.22</td>
<td>6.08 ± 0.78</td>
<td>0.181 ± 0.004</td>
<td>NM</td>
</tr>
<tr>
<td>22</td>
<td>400</td>
<td>3.74 ± 0.34</td>
<td>6.138 ± 1.36</td>
<td>1.28 ± 0.12</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>22</td>
<td>200</td>
<td>11.80 ± 1.12</td>
<td>6.005 ± 1.42</td>
<td>4.14 ± 0.40</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>22</td>
<td>50</td>
<td>14.31 ± 1.20</td>
<td>5.788 ± 1.18</td>
<td>5.21 ± 0.45</td>
<td>3.74 ± 0.46</td>
<td>0.067 ± 0.002</td>
<td>NM</td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>16.14 ± 1.25</td>
<td>5.746 ± 1.08</td>
<td>5.92 ± 0.47</td>
<td>3.81 ± 0.71</td>
<td>0.115 ± 0.003</td>
<td>NM</td>
</tr>
<tr>
<td>31</td>
<td>120</td>
<td>10.47 ± 0.76</td>
<td>5.523 ± 1.32</td>
<td>4.00 ± 0.30</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>31</td>
<td>100</td>
<td>10.68 ± 0.87</td>
<td>5.420 ± 1.10</td>
<td>4.15 ± 0.35</td>
<td>2.28 ± 0.51</td>
<td>0.262 ± 0.007</td>
<td>NM</td>
</tr>
<tr>
<td>31</td>
<td>90</td>
<td>13.61 ± 0.93</td>
<td>5.795 ± 1.18</td>
<td>4.95 ± 0.35</td>
<td>3.35 ± 0.34</td>
<td>0.235 ± 0.006</td>
<td>NM</td>
</tr>
<tr>
<td>31</td>
<td>50</td>
<td>13.31 ± 0.49</td>
<td>5.383 ± 1.14</td>
<td>5.21 ± 0.22</td>
<td>3.77 ± 0.40</td>
<td>0.270 ± 0.007</td>
<td>NM</td>
</tr>
<tr>
<td>31</td>
<td>20</td>
<td>20.70 ± 0.75</td>
<td>6.087 ± 1.21</td>
<td>7.17 ± 0.30</td>
<td>7.40 ± 1.33</td>
<td>0.194 ± 0.005</td>
<td>NM</td>
</tr>
<tr>
<td>31</td>
<td>10</td>
<td>62.90 ± 2.72</td>
<td>6.040 ± 1.39</td>
<td>21.95 ± 1.08</td>
<td>8.74 ± 0.33</td>
<td>0.255 ± 0.008</td>
<td>NM</td>
</tr>
</tbody>
</table>

*NM: not measured; the uncertainties shown in the table are 2σ analytical uncertainty. The distances from the sampling stations 31 (37.52° N, 141.44° E), 22 (38.00° N, 143.00° E), 14 (37.50° N, 144.00° E), and 11 (37.50° N, 147.00° E) to the Fukushima NPP are about 40, 180, 260, and 530 km, respectively.

RESULTS AND DISCUSSION

Distribution of 129I in Seawater Offshore Fukushima. In 4 seawater profiles offshore Fukushima, the highest concentration of 129I up to 62×10^7 atoms/L was measured in the surface water from the station 31 about 40 km from the 1FNPP (Table 1). In the other 3 stations (11, 14, and 22), similar 129I concentrations of $(14–16) \times 10^7$ atoms/L at depth 20 m were observed, which is slightly lower than that at station No. 31 with the value of 20×10^7 atoms/L at the same depth (Table 1). At station 31, the 129I concentrations decrease with increasing depth to about $(10–13) \times 10^7$ atoms/L in the depth 50–120 m (Figure 1). The decreasing 129I concentrations with depth were observed at all stations. The lowest 129I concentration of 0.77×10^7 atoms/L was observed at a depth of 400 m at station 14, which is about 260 km offshore Fukushima. A similar low 129I concentration of 1.9×10^7 atoms/L was measured at depth of 400 m at station 11 (the most distant location 530 km from Fukushima). These values are 30–80 times lower than that of the surface water at station 31. Relative lower concentrations of 129I in subsurface water (50–400 m depth) from station 14 compared to those at station 11 were measured, although station 11 is relatively far from Fukushima (530 km) compared to station 11 (260 km), these might be attributed to the pathway of water current as well as the contaminated water plume in this area.

Relatively constant 127I concentrations of 55–61 µg/L were observed in these seawater samples (Table 1). The distribution of the 129I/127I ratios (Figure 2) is the same as for the 129I concentrations; the highest 129I/127I ratio of 22×10^{-10} was observed at the 10 m depth in station 31, while the lowest 129I/127I ratio is only 0.26×10^{-10} in the water from station 14 at a depth of 400 m (Figure 2).

Inorganic Speciation of 129I and 127I in Seawater Profiles. In seawater, especially offshore and in the open sea, iodine mainly exists as iodide and iodate and to a minor extent as organic iodine, although a high fraction of iodine in coastal and estuarine seawater and river and lake water was observed in organic form, and increased level of organic iodine was reported in some open sea waters. Two seawater samples collected in the North Sea (open seawater) and offshore Fukushima (surface water at station 31), respectively, were analyzed for both total inorganic 129I and total 127I using a method recently developed in our lab. In this method, organic matter was first decomposed using K$_2$S$_2$O$_8$ at pH 1–2 to convert any organic associated iodine to inorganic form, followed by solvent extraction after addition of 127I carrier. The results showed no significant difference between total inorganic 129I and total 127I, confirming that negligible amount of 129I was present in organic form in these open sea and offshore seawater.
129I/127I ratios for iodide increase from 14×10^{-10} in the sub-surface water to 104×10^{-10} in the surface water at station 31, while 129I/127I ratios for iodate are more than 45 times lower compared to those for iodide, only $(0.04–0.31) \times 10^{-10}$ (Table S-2).

The different distribution of 129I species compared to 127I can be attributed to two reasons: (1) the different sources of 127I and 129I; (2) relatively long time to reach equilibrium among iodine oxidation states in the open sea. The ocean is the main source of iodine (127I), which accounts for more than 80% of iodine in the earth’s crust. Distribution of 127I species in seawater depends on many parameters. In the open sea (oxygenated seawater), iodine mainly occurs as iodate; iodide concentrations might increase in the coastal water and surface water by reduction of iodate through biological, chemical, and photochemical approaches.22 Seawaters analyzed in this work were collected from an open sea, and the measured iodide/iodate ratios in these samples are typical values for the open sea.

Although the oxidation of iodide to iodate is a favored process in view of chemical dynamics of redox reactions of iodine in oxygenated seawater, in the North Sea, Nordic seas, and the Arctic has shown, however, that oxidation of iodide to iodate in the open sea is a slow process,13 and chemical species of 129I in offshore water and in the open sea have not significantly changed during their transport from the North Sea to the Norwegian Sea, and further to the Arctic, which takes 1–4 years. The seawater investigated in this work was collected June 9–15, about 2.5 months after direct liquid discharges of contaminated water from 1FNPP. Therefore, the dominant iodide species of 129I should result from its source, i.e. that 129I was discharged to the seawater from the 1FNPP mainly in iodide form. Chemical species of radioiodine in neither the liquid discharges from the 1FNPP nor irradiated fuel in the reactor have been reported. However, it has been observed that radioiodine (131I, 129I, or 124I) in trap solution thermally released from the irradiated uranium or tellurium is mainly in iodide form (Syed M. Qaim, 2012, communication in NRC-9, 2012). This might imply that radioiodine in the contaminated water from the damaged reactor in 1FNPP might be mainly in iodide form. The chemical species of radioiodine in the precipitation of Fukushima are not yet available.

Source Terms of 129I in Seawater Offshore Fukushima.

There are 4 possible sources of 129I in the seawater offshore Fukushima: (1) direct liquid discharges from 1FNPP to the sea; (2) atmospheric fallout of 129I from Fukushima accident; (3) runoff of 129I deposited on the land to the sea; (4) global fallout of 129I.

In a seawater profile collected offshore Kushiro (42°N, 146°E) before Fukushima accident in 2007, it has been observed that the 129I/127I ratios decreased with increasing depth from 0.7×10^{-10} in surface water, 0.18×10^{-10} in depth of 500 m, to $<0.07 \times 10^{-10}$ in the deeper water (>1000 m), corresponding to 129I concentration of 2×10^7 atoms/L in the surface water to 0.5×10^7 atoms/L at depth about 500 m, and then $<0.2 \times 10^7$ atoms/L in deeper water (>1000 m).26 Similar levels of 129I concentrations of $(0.8–2) \times 10^7$ atoms/L in surface and subsurface (>1000 m) have also been reported in two water profiles collected from the Northwestern Pacific Ocean (35°N, 152°E and 31°N, 170°E) in 1997.29 Because there is no other source of 129I in the Pacific Ocean except global fallout (and possibly local fallout from the nuclear weapons testing at Bikini and Eniwetok atolls29) before the Fukushima accident, the 129I molecular ratio up to 8.7 in surface water (<20 m) and about 2–3 in subsurface water (>50 m). However, iodate is the dominant species of 127I, with a relative constant molecular ratio of iodide/iodate of about 0.2 (range of 0.07–0.27) (Table 1). In the water profile at station 31, a trend of gradually decreasing iodide/iodate ratios from 8.7 in the surface water (at depth of 10 m) to 2.2 in subsurface water (at depth of 120 m) is observed (Figure 3). 129I/127I ratios show a significantly different distribution for iodide and iodate, with much higher isotopic ratio for iodide compared to iodate (Table S-2). The samples. It is therefore shown that the measured total inorganic 127I concentrations represent the total 129I in the seawater measured in this work.

The analytical results of iodide, iodate, and total iodine for both 127I and 129I (Table S-2) show a completely different distribution of 129I compared to 127I in all seawater analyzed (Figure 3). 129I is mainly in iodide form, with an iodide/iodate ratio of about 0.2 (range of 0.07–0.27) (Table 1). In the water profile at station 31, a trend of gradually decreasing iodide/iodate ratios from 8.7 in the surface water (at depth of 10 m) to 2.2 in subsurface water (at depth of 120 m) is observed (Figure 3). 129I/127I ratios show a significantly different distribution for iodide and iodate, with much higher isotopic ratio for iodide compared to iodate (Table S-2). The
level in these waters should be a representative level of 129I in the Pacific Ocean. The 129I level (for both 129I concentrations and 129I/131I ratios) in the surface seawater (<20 m) offshore Fukushima analyzed in this work is 5–30 times higher than the global fallout value, and 1.5–7 times higher in the subsurface water (>400 m). A significantly decreased 129I level with the increased depth in the water columns, especially in the top 100 m, was observed (Figures 1 and 2). At station 31, more than 3 times higher 129I level at 10 m compared to at 20 m depth water was measured, this might imply that 129I at surface (<10 m) is even higher, and difference of the 129I concentration at surface water comparing to the pre-accident level is even bigger that just comparing with 20 m and 10 m depth water. Investigation of 129I in seawater nearby the discharge point of nuclear power plants in China (the Pacific Ocean) has shown no significant influence of the operation of NPP on the 129I levels in the seawater, and the 129I concentrations of $(0.7–2.5) \times 10^3$ atoms/L in surface water collected in 2–10 km distance from the discharge point of the NPP, corresponding to 129I/137Cs ratios of $(0.8–2.6) \times 10^{-10}$. It can be assumed that there was no significant influence of the operation of the Fukushima NPP on 129I levels in seawater before the accident. The elevated 129I levels in the surface seawater offshore Fukushima can therefore not be attributed to global fallout and the discharges from the ordinary operation of the Fukushima NPP. However, the global fallout contribution to the 129I levels in the subsurface waters could not be ignored.

During the Fukushima accident in March 2011, huge amounts of radionuclides including 150–160 PBq of 131I and 10–15 PBq of 137Cs were released to the atmosphere. The half-lives of these radionuclides are very much different from a few hours (e.g., 131I) to millions of years (e.g., 129I). For easy discussion, all concentrations and ratios of the radionuclides discussed in this work (i.e., 137Cs, 131I, and 129I) are decay-corrected to March 13, 2011, the beginning of the radioactive releases from the nuclear accident at the Fukushima Dai-ichi nuclear power plant, if not otherwise specified. It has been estimated that a total of 5.6 PBq of 137Cs released to the atmosphere has been deposited over Japan and the surrounding ocean (130–150° E and 30–46° N), and a similar value of 5 PBq of 137Cs deposited in the Ocean surrounding Japan has also been estimated by another group. This means that 30–50% of 137Cs released to the atmosphere during the accident was deposited in the ocean surrounding Japan, indicating the deposition of radionuclides from the atmosphere to the ocean is one of important sources of radionuclides in seawater offshore Fukushima. Up to 77 Bq/L of 131I and 24 Bq/L of 137Cs were measured in seawater 30 km offshore Fukushima on March 23, 2011; this is more than 10 times higher than the background level of 1 mBq/L of 137Cs in the Pacific Ocean, indicating a notable contribution of atmospheric deposition into the sea offshore Fukushima.

It is difficult to estimate the amount of radionuclide runoff from the land to the Sea via rivers, because no sufficient data on radionuclide concentrations in rivers are available. It has been reported that iodine can be easily absorbed in soil components, especially in the soil with high organic matter. It can be estimated that only very small fraction of iodine deposited on the lands can be quickly removed to the sea through rain and river runoff. Considering that only 13% of radioiodine released to the atmosphere was deposited on the land of Japan, the runoff of 129I from the land to the sea would not be a significant source of 129I in the seawater offshore Fukushima.

Direct liquid discharges of 3.5–4 PBq of 137Cs from 1FNPP to the sea from 21 March to 30th April 2011 have been estimated. Much higher releases of 137Cs of 27 PBq (12–41 PBq) have been estimated using a simple interpolation model of sparsely observed data and relatively coarse horizontal resolution. But a small release of 137Cs of only 0.94 PBq in 1–6 April 2011 was estimated by Japanese government. Therefore the direct discharge from 1FNPP to the sea is another important source of 129I in the seawater offshore Fukushima.

The seawater samples investigated in this work have also been analyzed for 137Cs using AMP (ammonium molybdophosphate) preconcentration and gamma spectrometry measurement, and 0.01–1.1 Bq/L of 137Cs were measured in these waters, i.e. 60–1100 times higher 137Cs concentrations compared to the global fallout level, indicating its dominant Fukushima source. The 129I/137Cs atomic ratios in the analyzed seawater samples are calculated to be 0.41–0.62 in the top 50 m water column and 0.8–1.7 in subsurface seawaters (>50 m) at 4 stations. Cesium is considered to be a relatively conservative element in oceans and 137Cs has been widely applied as an oceanographic tracer for water circulation, although the residence time of 137Cs is much shorter than 129I due to the shorter physical half-life of 137Cs and relatively higher adsorption of 137Cs to the particulates (especially clay minerals) suspending in the water column. The high 129I/137Cs ratios in the subsurface seawater might be attributed to the fact that a relatively high fraction of 129I in the subsurface seawater originates from global fallout. Based on the fact that the 129I concentrations in subsurface water measured in this work are 1.5–7 times higher than pre-accident values, it can be estimated that 12–75% 129I in subsurface water of >400 m depth originates from the global fallout. In addition, the higher analytical uncertainty of 137Cs in subsurface water samples with low 137Cs concentration also influences this value. By measurement of soil samples collected around the 1FNPP, a 129I/137I atomic ratio of (26.6 ± 7.5) has been reported. Therefore 131I/137Cs atomic ratios in the surface water (<50 m depth) offshore Fukushima can be derived to be 0.015–0.023, or an activity ratio of 21–32. This values are close to the measured 131I/137Cs activity ratio of about 17.8 in coastal waters near the discharge point in the 1FNPP after March 25, 2011.

Based on the estimated atmospheric releases of 131I (150 PBq) and 137Cs (13 PBq), 131I/137Cs activity ratio in the atmosphere released from the Fukushima accident can be calculated to be 11.5. Measurement of 131I and 137Cs in precipitation (rain and dust) over Japan from March 18 to April 29 has resulted in 131I/137Cs activity ratios ranging from 3.2 to 500 with a median of 15; the higher ratios occurred at downstream inland sites of radioactive plume. The large variation of 131I/137Cs ratio might also result from the different ratios of 131I/137Cs in different reactors. The measured 131I/137Cs ratios in air samples collected over Europe during March 22 to April 11, 2011 also highly varied, with an average of 40–100 for aerosol samples. Considering that only about 20% of 131I occurred in particulate-associated forms, the 131I/137Cs ratio in the atmosphere is likely higher than 200. In addition, increased 131I/137Cs ratios with sampling date from March 19, 2011 onward have been observed in aerosols from the Fukushima area, indicating that the radioactive cloud contained more radioiodine at the beginning of the accident. This could be attributed to the properties of higher volatility and longer residence time of iodine in the atmosphere compared to 137Cs. In atmosphere,
iodine exists in both gaseous and particle-associated forms, while 137Cs is mainly in particle-associated form. Removal rate of particles from the atmosphere by dry and wet deposition is much higher than gaseous form of iodine due to less efficiency of gaseous iodine capture to droplets. Consequently, residence time of radioiodine in atmosphere is longer than 137Cs (particle), and therefore decreased 137Cs concentrations compared to 131I in the atmosphere or increased 131I/137Cs ratios with the increased time after accident were observed in the atmosphere or precipitation. The relatively high 129I/137Cs ratios measured in surface seawater can therefore be attributed to the contribution of the atmospheric deposition in the seawater offshore Fukushima.

In summary, 129I in the surface water likely mainly originated from the liquid discharges from the Fukushima 1FNPP to the sea; however, the atmospheric deposition has also a visible contribution, and in subsurface waters the contribution from global fallout is not negligible.

Amount of 129I Discharged to the Sea from the Fukushima Daiichi NPP. As described above, 129I in the seawater offshore Fukushima has two major sources, i.e. direct liquid discharge from 1FNPP, and the atmospheric deposition subsequent to the accident. From March 21, 2011, 131I and 137Cs concentrations in coastal seawater samples collected at 3 sites at the discharge channel of 1FNPP and 10 km and 16 km south of the 1FNPP, as well as at 8 sites 30 km off the Fukushima coastline, have been monitored by the operator of 1FNPP, the Tokyo Electric Power Company (TEPCO), and the Ministry of Education, Culture, Sports, Science and Technology (MEXT). A quite constant activity ratio of 131I/137Cs of 17.6 has been observed in the seawater from all coastal sites near to the 1FNPP from March 26, 2011, while scattered and higher 131I/137Cs ratios of >28 have been observed in the seawater from the sites 10 and 16 km south of the 1FNPP March 21−25, 2011. A large scatter of 131I/137Cs ratios of 6−20 have been observed in seawater collected at 30 km offshore Fukushima before April 2.8,9 Similarly lower 131I/137Cs ratios of 3−18 have also been observed at sites >5 km from the coast of Fukushima before April 2.8,9 The large scatter before March 25 in coastal sites and before April 2 at sites offshore Fukushima can be attributed to the atmospheric deposition from the Fukushima accident.8,9,39 Large variations in the 131I/137Cs activity ratios in atmospheric and precipitation samples have been observed in Japan as well as at far locations in Europe after the Fukushima accident.39,40 This is attributed to different ratios of 131I/137Cs from different reactors in the 1FNPP, as well as to different behaviors of 131I and 137Cs in the atmosphere. 137Cs is mainly associated with particles, while radioiodine can be in both gaseous and particle-associated form,8,9,40 which cause different dispersion and deposition patterns of 131I and 137Cs. Therefore the 131I/137Cs ratios vary in seawater, to which the atmospheric deposition has a significant contribution (together with liquid discharges). The constant 131I/137Cs ratio (17.6) in the seawater collected from the coastal sites within 16 km of the 1FNPP confirms that the 131I and 137Cs in seawater offshore Fukushima is dominated by the direct liquid discharges from the damaged nuclear reactor 2 in the 1FNPP after March 25, 2011.8,9,33 Because of the same chemical properties and environmental behaviors of 131I and 129I, the amount of 129I directly discharged to the sea from the 1FNPP can be estimated from the measured 131I/137Cs ratio, and estimated amount of 137Cs directly discharged to the sea from the 1FNPP. Here, we applied the estimated value of 3.5 PBq for direct liquid discharge of 137Cs to the sea,36 the amount of 131I directly discharged the sea can be estimated to be 61.6 PBq. Based on these data and the measured 129I/131I atomic ratio of (26.6 ± 7.5) for released radioiodine from the 1FNPP,38 the amount of 129I directly discharged to the sea from the 1FNPP can be estimated to be 2.35 GBq (or 0.35 kg).

Of the total 150 PBq of 131I and 137Cs released to the atmosphere from the Fukushima accident,1,4 it has been estimated that more than 80% of 137Cs has been deposited in the ocean, 18% in Japanese land area, and only 1% was deposited over land areas outside Japan.8,9 A similar percentage of radionuclide deposition has been estimated by Morino et al.7 using a 3-dimensional chemical transport model; they reported that 13% of 131I and 22% of 137Cs fell over the land of Japan, 19% 131I and 10% of 137Cs were deposited over the Ocean in the area of 34−41° N and 137−145° E (700 km × 700 km), and the rest was transported and deposited in other areas, mainly in the Pacific Ocean. It can be estimated that about 120 PBq of 131I was deposited in the Ocean, mostly in the Pacific Ocean; of this, 28.5 PBq of 131I was deposited in the sea area of 34−41° N and 137−145° E, mainly offshore Fukushima. Based on the reported 131I/137Cs atomic ratio of 26.6,38 about 4.57 GBq (0.68 kg) of 129I released to the atmosphere was deposited in the Ocean, and about 1.09 GBq of 129I (0.16 kg) was deposited in the sea area of 34−41° N and 137−145° E, most in the sea offshore Fukushima. This estimation indicates that liquid discharges from 1FNPP are the major source of 129I in the sea offshore Fukushima, and the atmospheric deposition is the minor source, accounting for about 32% of the total 129I.

If we assume the liquid discharges still remained in the 700 × 700 km area offshore Fukushima and mainly in the top 50 m water column, and it was homogeneously distributed in this area, 129I concentration in the top 50 m seawater can be calculated to be about 1 × 10⁸ atom/L, or a 129I/127I isotopic ratio of about 3.5 × 10−10. This value agrees relatively well with the measured 129I concentration ((0.5−2) × 10⁸ atoms/L) and 129I/127I ratios (2−7) × 10−10 in the surface water (10−50 m depth) offshore Fukushima.

It has been estimated that Chernobyl accident released about 1.3−6 kg of 129I to the atmosphere.34,35 A total release of 1.2 kg of 129I from the Fukushima accident estimated in this work is comparable to that released from the Chernobyl accident. However, the 129I released from Chernobyl accident was deposited in the terrestrial area, mainly in European countries, whereas 129I released from Fukushima accident was mainly deposited to the ocean.

Reprocessing plants have released large amounts of 129I to the environment, especially from the two European reprocessing plants at La Hague (France) and Sellafield (UK), which have discharged about 5200 kg of 129I to the sea and 440 kg to the atmosphere (up to 2007).33 The 129I released from the Fukushima accident accounts therefore to less than 0.3% of the total 129I released from reprocessing plants. However, the 129I from the European reprocessing plants has been mainly discharged and transported to the European seas, and further to the Arctic.11,13,42 The contribution of 129I from the Fukushima accident to the Pacific Ocean is remarkable, as it has influenced the total inventory of 129I in the Pacific Ocean. The Fukushima-derived 129I will be therefore a useful tracer for oceanographic research in this area.
Detailed chemical procedure for separation of iodine species in seawater samples; detailed sampling information and analytical results of 129I and 127I in 4 seawater profiles (Table S-1); analytical results of inorganic speciation of 129I and 127I in 4 seawater profiles (Table S-2); a map showing sampling stations and water depth (Figure S-1); and a schematic diagram of chemical procedure for speciation analysis of 129I and 127I (Figure S-2). This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

ACKNOWLEDGMENTS

We acknowledge Dr. Ken Buesseler (WHOI) and Dr. Harmut Nies (IAEA-EL) for provision of seawater samples. X.L.H. acknowledges financial support provided by Innovation Method Fund China (2012IM030200). P.P.P. acknowledges support provided by the EU Research and Development Operational Program funded by the ERDF (2624022004). Equipment support at the University of Arizona was provided in part by a grant from the National Science Foundation (EAR0929458).

AUTHOR INFORMATION

Corresponding Author
E-mail: xiho@risoe.dtu.dk; phone:+45-21325129; fax:+45-46775347.

Notes
The authors declare no competing financial interest.

